• Shop by category
  • Powered by eBay
  • Statistical Methods for Forecasting by Bovas Abraham (English) Paperback Book

    • Item No : 235410908085
    • Condition : Brand New
    • Brand : No brand Info
    • Seller : the_nile_uk_store
    • Current Bid : US $126.51
    • * Item Description

    • The Nile on eBay
        FREE SHIPPING UK WIDE
       

      Statistical Methods for Forecasting

      by Bovas Abraham, Johannes Ledolter

      This book provides statistical methods and models that can be used to produce short-term forecasts. The authors provide an intermediate-level discussion of a variety of statistical forecasting methods and models, to explain their interconnections, and to bridge the gap between theory and practice. .

      FORMAT
      Paperback
      LANGUAGE
      English
      CONDITION
      Brand New


      Publisher Description

      The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists.

      "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!"
      -Journal of the Royal Statistical Society

      "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates."
      -Choice

      Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.

      Back Cover

      The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!"
      —Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates."
      —Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.

      Flap

      The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!" --Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates." --Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.

      Author Biography

      BOVAS ABRAHAM, PhD, is Associate Professor in the Department of Statistics and Actuarial Science at the University of Waterloo, Ontario, Canada. He is a Fellow of the American Statistical Association, and a member of the Statistical Society of Canada and the Royal Statistical Society. Dr. Abraham received his PhD in statistics from the University of Wisconsin–Madison. JOHANNES LEDOLTER, PhD, is Associate Professor in both the Department of Statistics and Actuarial Science and the Department of Management Sciences at the University of Iowa. He is a Fellow of the American Statistical Association and a member of the International Statistical Institute. Dr. Ledolter is coauthor of Statistical Quality Control: Strategies and Tools for Continual Improvement and Achieving Quality Through Continual Improvement, both published by Wiley. He received his PhD in statistics from the University of Wisconsin–Madison.

      Table of Contents

      1. Introduction and Summary. 2. The Regression Model and Its Application in Forecasting. 3. Regression and Exponential Smoothing Methods to Forecast Nonseasonal Time Series. 4. Regression and Exponential Smoothing Methods to Forecast Seasonal Time Series. 5. Stochastic Time Series Models. 6. Seasonal Autoregressive Integrated Moving Average Models. 7. Relationships Between Forecasts from General Exponential Smoothing and Forecasts from Arima Time Series Models. 8. Special Topics. References. Exercises. Data Appendix. Table Appendix. Author Index. Subject Index.

      Long Description

      The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!" Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates." Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.

      Feature

      Comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. Provides time series, autocorrelation, and partial autocorrelation plots. Examples and exercises using real data.

      Details

      ISBN0471769878
      Author Johannes Ledolter
      Short Title STATISTICAL METHODS FOR FORECA
      Series Wiley Series in Probability and Statistics
      Language English
      ISBN-10 0471769878
      ISBN-13 9780471769873
      Media Book
      Format Paperback
      Illustrations Yes
      Year 2005
      Edition 2nd
      Place of Publication New York
      Country of Publication United States
      Replaces 9780471867647
      Residence -CN
      Birth 1942
      Affiliation Univ. of Waterloo, Canada
      DOI 10.1604/9780471769873
      Series Number 624
      UK Release Date 2005-10-21
      NZ Release Date 2005-09-01
      Pages 472
      Publisher John Wiley & Sons Inc
      Publication Date 2005-10-21
      Imprint Wiley-Interscience
      Alternative 9780471867647
      DEWEY 519.5
      Audience Professional & Vocational
      US Release Date 2005-10-21
      AU Release Date 2005-09-13

      TheNile_Item_ID:2339735;
    ★ Recommended Products Related To This Item
    ♥ Best Selling Products in this category