When you click on links to various merchants on this site and make a purchase, this can result in this site earning a commission. Affiliate programs and affiliations include, but are not limited to, the eBay Partner Network.
List of Contributors xv Editor's Preface xix 1 Introduction 1 1.1 Overview 1 1.2 Properties Unique to Nanomaterials 3 1.3 Terminology 4 1.3.1 Nanomaterials 4 1.3.2 Physicochemical Properties 7 1.4 Measurement of Good Practice 8 1.4.1 Method Validation 8 1.4.2 Standard Documents 13 1.5 Typical Methods 16 1.5.1 Sampling 16 1.5.2 Dispersion 19 1.6 Potential Errors Due to Chosen Methods 20 1.7 Summary 20 Acknowledgments 21 References 21 2 Nanomaterial Syntheses 25 2.1 Introduction 25 2.2 Bottom-Up Approach 26 2.2.1 Arc-Discharge 26 2.2.2 Inert-Gas Condensation 26 2.2.3 Flame Synthesis 27 2.2.4 Vapor-Phase Deposition 27 2.2.5 Colloidal Synthesis 27 2.2.6 Biologically synthesized nanomaterials 28 2.2.7 Microemulsion Synthesis 28 2.2.8 Sol-Gel Method 29 2.3 Synthesis: Top-Down Approach 29 2.3.1 Mechanical Milling 29 2.3.2 Laser Ablation 30 2.4 Bottom-Up and Top-Down: Lithography 30 2.5 Bottom-Up or Top-Down? Case Example: Carbon Nanotubes (CNTs) 30 2.6 Particle Growth: Theoretical Considerations 32 2.6.1 Nucleation 32 2.6.2 Particle Growth and Growth Kinetics 33 2.6.2.1 Diffusion-Limited Growth 33 2.6.2.2 Ostwald Ripening 34 2.7 Case Study: Microreactor for the Synthesis of Gold Nanoparticles 34 2.7.1 Introduction 34 2.7.2 Method 36 2.7.2.1 Materials 36 2.7.2.2 Protocol: Nanoparticles Batch Synthesis 37 2.7.2.3 Protocol: Nanoparticle Synthesis via Continuous Flow Microfluidics 37 2.7.2.4 Protocol: Nanoparticles Synthesis via Droplet-Based Microfluidics 38 2.7.2.5 Protocol: Dynamic Light Scattering 38 2.7.3 Results, Interpretation, and Conclusion 39 2.8 Summary 42 Acknowledgments 43 References 43 3 Reference Nanomaterials 49 3.1 Definition, Development, and Application Fields 49 3.2 Case Studies 50 3.2.1 Silica Nanomaterial as Potential Reference Material to Establish Possible Size Effects on Mechanical Properties 50 3.2.1.1 Introduction 50 3.2.1.2 Findings So Far 53 3.2.2 Silica Nanomaterial as Potential Reference Material in Nanotoxicology 55 3.3 Summary 57 Acknowledgments 58 References 58 4 Particle Number Size Distribution 63 4.1 Introduction 63 4.2 Measuring Methods 65 4.2.1 Particle Tracking Analysis 65 4.2.2 Resistive Pulse Sensing 67 4.2.3 Single Particle Inductively Coupled Plasma Mass Spectrometry 69 4.2.4 Electron Microscopy 71 4.2.5 Atomic Force Microscopy 73 4.3 Summary of Capabilities of the Counting Techniques 74 4.4 Experimental Case Study 74 4.4.1 Introduction 74 4.4.2 Method 76 4.4.3 Results and Interpretation 76 4.4.4 Conclusion 77 4.5 Summary 78 References 78 5 Solubility Part 1: Overview 81 5.1 Introduction 82 5.2 Separation Methods 84 5.2.1 Filtration, Centrifugation, Dialysis, and Ultrafiltration 84 5.2.2 Ion Exchange 85 5.2.3 High-Performance Liquid Chromatography, Electrophoresis, Field Flow Fractionation 87 5.3 Quantification Methods: Free Ions (And Labile Fractions) 90 5.3.1 Electrochemical Methods 90 5.3.2 Colorimetric Methods 93 5.4 Quantification Methods to Measure Total Dissolved Species 94 5.4.1 Indirect Measurements 94 5.4.2 Direct Measurements 95 5.5 Theoretical Modeling Using Speciation Software 96 5.6 Which Method? 97 5.7 Case Study: Miniaturized Capillary Electrophoresis with Conductivity Detection to Determine Nanomaterial Solubility 99 5.7.1 Introduction 99 5.7.2 Method 100 5.7.2.1 Materials 100 5.7.2.2 Dispersion Protocol 100 5.7.2.3 Instrumentation: CE-Conductivity Device 100 5.7.2.4 CE-Conductivity Microchip: Measurement Protocol 101 5.7.2.5 Protocol: To Assess the Feasibility of Measuring the Zn2+ (from ZnO Nanomaterial) Signal above the Fish Medium Background 102 5.7.2.6 Protocol: To Assess Data Variability between Different Microchips 102 5.7.3 Results and Interpretation 103 5.7.3.1 Study 1: Assessing Feasibility of the CE-Conductivity Microchip to Detect Free Zn2+ Arising from Dispersion of ZnO in Fish Medium 103 5.7.3.2 Study 2: Assessing Performance of Microchips Using Reference Test Material 103 5.7.4 Conclusion 105 5.8 Summary 105 Acknowledgments 105 References 106 6 Solubility Part 2: Colorimetry 117 6.1 Introduction 117 6.2 Materials and Method 119 6.2.1 Materials 119 6.2.2 Mandatory Protocol: NanoGenotox Dispersion for Nanomaterials 119 6.2.3 Mandatory Protocol: Simulated In Vitro Digestion Model 120 6.2.4 Colorimetry Analysis 121 6.2.5 SEM Analysis 122 6.3 Results and Interpretation 123 6.4 Conclusion 127 Acknowledgments 128 A6.1 Materials and Method 128 A6.1.1 Materials 128 A6.1.2 Mandatory Protocol: Ultrasonic Probe Calibration 128 A6.1.3 Mandatory Protocol: Benchmarking of SiO2 (NM 200) 129 A6.1.4 Mandatory Protocol: Preliminary Characterization of ZnO (NM 110) 129 A6.1.5 Mandatory Protocol: Dynamic Light Scattering (DLS) 130 A6.2 Results and Interpretation 130 A6.2.1 Probe Sonication 130 A6.2.2 Benchmarking with SiO2 (NM 200) 130 A6.2.3 NM 110: Characterizing Batch Dispersions ZnO (NM 110) 131 References 131 7 Surface Area 133 7.1 Introduction 133 7.2 Measurement Methods: Overview 134 7.3 Case Study: Evaluating Powder Homogeneity Using NMR Versus Bet 140 7.3.1 Background: NMR for Surface Area Measurements 141 7.3.2 Method 142 7.3.2.1 Materials 142 7.3.2.2 Sample Preparation for NMR 142 7.3.2.3 Protocol: NMR Analysis 142 7.3.2.4 BET Protocol 143 7.3.3 Results and Interpretation 143 7.3.4 Conclusion 145 7.4 Summary 145 Acknowledgments 145 References 149 8 Surface Chemistry 153 8.1 Introduction 153 8.2 Measurement Challenges 155 8.3 Analytical Techniques 157 8.3.1 Electron Spectroscopies 158 8.3.1.1 X-ray Photoelectron Spectroscopy (XPS) 158 8.3.1.2 Auger Electron Spectroscopy (AES) 159 8.3.2 Incident Ion Techniques 160 8.3.2.1 Secondary Ion Mass Spectrometry (SIMS) 160 8.3.2.2 Low- and Medium-Energy Ion Scattering (LEIS and MEIS) 160 8.3.3 Scanning Probe Microscopies 161 8.3.4 Optical Techniques 161 8.3.5 Other Techniques 162 8.4 Case Studies 163 8.4.1 Part I: Surface Characterization of Biomolecule-Coated Nanoparticles 163 8.4.2 Part II: Surface Characterization of Commercial Metal-Oxide Nanomaterials by TOF-SIMS 169 8.4.2.1 Effect of Sample Topography 171 8.4.2.2 Chemical Analysis of Nanopowders 171 8.5 Summary 174 References 174 9 Mechanical, Tribological Properties, and Surface Characteristics of Nanotextured Surfaces 179 9.1 Introduction 179 9.2 Fabricating Nanotextured Surfaces 181 9.2.1 Plasma Treatment Processes 181 9.2.2 Randomly Nanotextured Surfaces by Plasma Etching 182 9.2.3 Ordered Hierarchical Nanotextured by Plasma Etching 185 9.2.4 Carbon Nanotube Forests by Chemical Vapor Deposition (CVD) 185 9.3 Mechanical Property Characterization 187 9.3.1 Nanoindentation Testing 187 9.3.2 Tribological Characterization by Nanoscratching 190 9.4 Case Study: Nanoscratch Tests to Characterize Mechanical Stability of PS/PMMA Surfaces 191 9.4.1 Method 191 9.4.2 Results and Discussion 192 9.5 Case Study: Structural Integrity of Multiwalled CNT Forest 194 9.6 Case Study: Mechanical Characterization of Plasma-Treated Polylactic Acid (PLA) for Packaging Applications 197 9.7 Conclusions 201 Acknowledgments 202 References 202 10 Methods for Testing Dustiness 209 10.1 Introduction 209 10.2 Cen Test Methods (Under Consideration) 213 10.2.1 The EN 15051 Rotating Drum (RD) Method 213 10.2.2 The EN 15051 Continuous Drop (CD) Method 215 10.2.3 The Small Rotating Drum (SRD) Method 217 10.2.4 The Vortex Shaker (VS) Method 219 10.2.5 Dustiness Test: Comparison of Methods 223 10.3 Case Studies: Application of Dustiness Data 225 10.4 Summary 226 Acknowledgments 227 References 227 11 Scanning Tunneling Microscopy and Spectroscopy for Nanofunctionality Characterization 231 11.1 Introduction 231 11.2 Extreme Field STM: a Brief History 234 11.3 STM/STS for the Extraction of Surface Local Density of States (LDOS): Theoretical Background 234 11.4 Scanning Tunneling Spectroscopy (STS) at Low Temperatures: Background 238 11.5 STM Instrumentation at Extreme Conditions: Specification Requirements and Design 239 11.6 STM/STS Imaging Under Extreme Environments: a Review on Applications 242 11.6.1 Atomic-Scale STM Imaging 242 11.6.2 Interference of Low-Dimensional Electron Waves 244 11.6.3 Interesting Phenomena Related to High-Magnetic Fields 246 11.7 Summary and Future Outlook 248 Acknowledgments 248 References 249 12 Biological Characterization of Nanomaterials 253 12.1 Introduction 253 12.1.1 Importance of Nanomaterial Characterization 253 12.1.2 Extrinsic NMs Characterization 254 12.1.3 The Proposal for Measuring "extrinsic" Properties 255 12.2 Measurement Methods 255 12.2.1 Review of Existing Approaches 255 12.2.2 Introducing Acetylcholinesterase as a Model Biosensor Protein 256 12.3 Experimental Case Study 257 12.3.1 Introduction 257 12.3.2 Method: Assay of AChE Activity 258 12.3.3 Results and Discussion 260 12.3.4 Conclusions 262 12.4 Summary 263 Acknowledgments 263 References 263 13 Visualization of Multidimensional Data for Nanomaterial Characterization 269 13.1 Introduction 269 13.2 Case Study: Structure-Activity Relationship (SAR) Analysis of Nanoparticle Toxicity 271 13.2.1 Introduction 271 13.2.2 Parallel Coordinates: Background 273 13.2.3 Case Study Data 274 13.2.4 Method 276 13.2.5 Results and Interpretation 277 13.2.5.1 Analysis of the 14 Dry Powder Samples Using BET and DTT Data Only 277 13.2.5.2 Analysis of the Structural Properties of Zinc Oxide (N14) and Nickel Oxide (N12) (Excluding BET and DTT Data) 278 13.2.5.3 Metal-Content-Only Analysis of the 18 Samples, Excluding Structural Descriptors 279 13.2.5.4 Analysis of the Structural Properties of Nanotubes (N3) 281 13.2.5.5 Analysis of the Structural Properties of Aminated Beads (N6) (Excluding BET and DTT Data) 281 13.2.6 Conclusion 283 13.3 Summary 283 References 284 Index 287