Algorithmic Number Theory : 5th International Symposium, Ants-V, Sydney, Aust...
Item No : 365732891547
Condition : Brand New
Brand : No brand Info
Seller : greatbookprices1
* Item Description
Algorithmic Number Theory : 5th International Symposium, Ants-V, Sydney, Australia, July 7-12, 2002 : Proceedings, Paperback by Fieker, Claus (EDT); Kohel, David R. (EDT), ISBN 3540438637, ISBN-13 9783540438632, Brand New, Free shipping in the US . 9 JohnCoates TheWeilandTatePairingsasBuildingBlocks forPublicKeyCryptosystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 AntoineJoux UsingEllipticCurvesofRankOnetowardstheUndecidability ofHilbert’sTenthProblemoverRingsofAlgebraicIntegers. . . . . . . . . . . . . 33 BjornPoonen Onp-adicPointCountingAlgorithmsforEllipticCurves overFiniteFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 TakakazuSatoh NumberTheory OnArithmeticallyEquivalentNumberFieldsofSmallDegree . . . . . . . . . . . 67 WiebBosma,BartdeSmit ASurveyofDiscriminantCounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 HenriCohen,FranciscoDiazyDiaz,MichelOlivier AHigher-RankMersenneProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 GrahamEverest,PeterRogers,ThomasWard AnApplicationofSiegelModularFunctions toKronecker’sLimitFormula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 TakashiFukuda,KeiichiKomatsu ComputationalAspectsofNUCOMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 MichaelJ. Jacobson,Jr. ,AlfredJ. vanderPoorten E?cientComputationofClassNumbersofRealAbelianNumberFields. . 134 St´ephaneR. Louboutin AnAcceleratedBuchmannAlgorithmforRegulatorComputation inRealQuadraticFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 UlrichVollmer VIII TableofContents ArithmeticGeometry SomeGenus3CurveswithManyPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 RolandAuer,JaapTop 7 8 Trinomialsax +bx+candax +bx+c withGaloisGroupsofOrder168and8·168. . . . . . . . . . . . . . . . . . . . . . . . . . . 172 NilsBruin,NoamD. Elkies ComputationsonModularJacobianSurfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 189 EnriqueGonz´alez-Jim´enez,JosepGonz´alez,JordiGu`ardia IntegralPointsonPuncturedAbelianSurfaces. . . . . . . . . . . . . . . . . . . . . . . . . 198 AndrewKresch,YuriTschinkel Genus2Curveswith(3,3)-SplitJacobian andLargeAutomorphismGroup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 TonyShaska TransportableModularSymbolsandtheIntersectionPairing. . . . . . . . . . . . 219 HelenaA. Verrill EllipticCurvesandCM ActionofModularCorrespondencesaroundCMPoints. . . . . . . . . . . . . . . . . 234 Jean-MarcCouveignes,ThierryHenocq 2 3 CurvesDy =x ?xofOddAnalyticRank. . . . . . . . . . . . . . . . . . . . . . . . . . . 244 NoamD. Elkies ComparingInvariantsforClassFieldsofImaginaryQuadraticFields. . . . . 252 AndreasEnge,Fran¸coisMorain ADatabaseofEllipticCurves–FirstReport. . . . . . . . . . . . . . . . . . . . . . . . . . 267 WilliamA. Stein,MarkWatkins PointCounting IsogenyVolcanoesandtheSEAAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 MireilleFouquet,Fran¸coisMorain FastEllipticCurvePointCountingUsingGaussianNormalBasis. . . . . . . . 292 HaeYoungKim,JungYoulPark,JungHeeCheon,JeHongPark, JaeHeonKim,SangGeunHahn AnExtensionofKedlaya’sAlgorithmtoArtin-SchreierCurves inCharacteristic2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 JanDenef,FrederikVercauteren TableofContents IX Cryptography ImplementingtheTatePairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 StevenD. Galbraith,KeithHarrison,DavidSoldera SmoothOrdersandCryptographicApplications. . . . . . . . . . . . . . . . . . . . . . . 338 CarlPomerance,IgorE. Shparlinski ChineseRemainderingforAlgebraicNumbersinaHiddenField. . . . . . . . . 349 IgorE. Shparlinski,RonSteinfeld FunctionFields AnAlgorithmforComputingWeierstrassPoints. . . . . . . . . . . . . . . . . . . . . . . 357 FlorianHess NewOptimalTameTowersofFunctionFieldsoverSmallFiniteFields . . . 372 Wen-ChingW. Li,HirenMaharaj,HenningStichtenoth, NoamD. Elkies PeriodicContinuedFractionsinEllipticFunctionFields. . . . . . . . . .
★ Recommended Products Related To This Item
♥ Best Selling Products in this category